Spacecraft Power Technologies

A.K. Hyder
University of Notre Dame

R.L. Wiley
Booz, Allen & Hamilton Inc.

G. Halpert
Jet Propulsion Laboratory

D.J. Flood
NASA Glenn Research Center

S. Sabripour
Lockheed Martin CPC

THE CENTER FOR LIBRARY RESOURCES AND EDUCATIONAL MEDIA
SURANAREE UNIVERSITY OF TECHNOLOGY

Imperial College Press
CONTENTS

PREFACE
ACKNOWLEDGEMENTS

1 INTRODUCTION
1. The beginnings
 1.1 The increasing demand for spacecraft electrical power
 1.2 The architecture of a spacecraft
2. The electrical power system
 2.1 An overview of electrical power systems
 2.2 Electrical power system designs
 2.3 Examples of missions and their electrical power systems
 2.4 Spacecraft electrical power technologies
 2.5 An overview of the book
3. References

2 ENVIRONMENTAL FACTORS
1. Introduction
2. Orbital considerations
 2.1 Orbital elements
 2.2 Eclipse times
3. The near-Earth space environment
 3.1 The neutral environment
 3.2 The plasma environment
 3.3 The radiation environment
 3.4 The particulate environment
4. References
3 SOLAR ENERGY CONVERSION

1. Introduction
 1.1 Space photovoltaic power systems
 1.2 Space power system applications and requirements
 1.3 Space solar cell and array technology drivers

2. Solar cell fundamentals
 2.1 Introduction
 2.2 Basic theory

3. Solar cell calibration and performance measurements
 3.1 Calibration techniques
 3.2 Laboratory measurement techniques

4. Silicon space solar cells
 4.1 Advanced silicon solar cells
 4.2 Radiation damage in silicon solar cells

5. III-V compound semiconductor solar cells
 5.1 Single junction cells
 5.2 Multiple junction cells

6. Thin film solar cells

7. Space solar cell arrays
 7.1 Space solar array evolution
 7.2 Rigid panel planar solar arrays
 7.3 Flexible, flat panel arrays
 7.4 Concentrator arrays
 7.5 Array environmental interactions
 7.6 Power system design and array sizing

8. Space thermophotovoltaic power systems
 8.1 TPV system efficiency
 8.2 Solar thermophotovoltaic space power systems

9. Conclusion

10. References

4 CHEMICAL STORAGE AND GENERATION SYSTEMS

1. Introduction

2. Inventions

3. Evolution of batteries in space
5 NUCLEAR SYSTEMS

1. Introduction

2. History of the U.S. space nuclear program
 2.1 Radioisotope space power development
 2.2 Space reactor power development
 2.3 The future

3. History of the Russian space nuclear program

4. Radioisotope systems
5. Reactors 264
6. Safety 273
 6.1 U.S. safety 274
 6.2 Russian space nuclear safety experience 280
 6.3 International developments in space nuclear safety 282
7. References 282

6 STATIC ENERGY CONVERSION 287
 1. Introduction 287
 2. Thermoelectrics 288
 3. Thermionics 294
 4. AMTEC 307
 5. Thermophotovoltaics 311
 6. References 318

7 DYNAMIC ENERGY CONVERSION 323
 1. Introduction 323
 2. Stirling cycle 324
 3. Closed Brayton cycle 332
 4. Rankine cycle 340
 5. References 349

8 POWER MANAGEMENT AND DISTRIBUTION 353
 1. Introduction 353
 1.1 The ideal power system 353
 1.2 Power subsystem overview 357
 1.3 Electrical power system options 361
 2. Functions of PMAD 363
 2.1 Power management and control 363
 2.2 Power distribution 372
 2.3 Fault management and telemetry 374
 2.4 Point-of-load DC-DC converters 375
CONTENTS

3. Components and packaging 397
 3.1 High-reliability space-grade parts 398
 3.2 Packaging technologies 404
4. System examples 404
 4.1 The Lockheed Martin A2100 405
 4.2 Global positioning system block IIR 407
 4.3 The International Space Station 407
 4.4 The Modular Power System 409
5. References 412

9 THERMAL MANAGEMENT 415
1. Introduction 415
 1.1 Definition and purpose of a TCS 416
 1.2 Characterization and design of the thermal control process 417
2. The thermal environment 421
 2.1 Solar radiation 422
 2.2 Planetary radiation 424
 2.3 Spacecraft-generated heat 426
3. Heat transfer mechanisms 429
 3.1 Heat transfer by conduction 429
 3.2 Heat transfer by radiation 430
 3.3 Absorptivity and emissivity 432
4. The basics of thermal analysis 435
5. Thermal management techniques 437
 5.1 Passive thermal management 438
 5.2 Active thermal management 445
6. References 449

Appendix: MAGNETIC MATERIALS 453

INDEX 467
Spacecraft Power Systems. Power System Functional Block Diagram. Power Source. PV Technologies. Semicrystalline and Polycrystalline. Production: Molten silicon poured into rectangular crucible under controlled cooling rate form partial and/or multiple crystals. Spacecraft Power. Rewind 10 Seconds. Next Up. There are no gas stations or power outlets in space. That's why NASA's Curiosity rover on Mars and some other NASA spacecraft that explore the solar system use something called "radioisotope power." NASA's Jet Propulsion Laboratory is working with the Department of Energy on ways to make the next generation of radioisotope power systems even more powerful and capable. Environmental factors: solar energy conversion, chemical storage and generation systems, nuclear systems, static energy conversion, dynamic energy conversion, power management, and distribution thermal management.