Preface:

This work is based on the work of many other individuals who have been involved with applications and Analog Devices since the company started in 1965. Much of the material that appears in this work is based on work that has appeared in other forms. My major job function in this case was one of editor. The list of people I would like to credit for doing the pioneering work include: Walt Kester, Walt Jung, Paul Brokaw, James Bryant, Chuck Kitchin, and many other members of Analog Devices technical community.

In addition many others contributed to the production of this edition by helping out with the production of this book by providing invaluable assistance by proofreading and providing commentary. I especially want to thank Walt Kester, Bob Marwin and Judith Douville, who also did the indexing.

Again, many thanks to those involved in this project

Hank Zumbahlen
Senior Staff Applications Engineer

Copyright © 2007 Analog Devices, Inc.

ISBN 0-916550-28-1

All rights reserved. This book, or any parts thereof, may not be reproduced in any form without the permission of the copyright owner. The information furnished by Analog Devices, Inc. is believed to be accurate and reliable. However no responsibility for its use is assumed by Analog Devices, Inc. for its use.

Analog Devices, Inc. makes no representation that the interconnections of its circuits as described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting of licenses to make, use or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.
TABLE OF CONTENTS

CHAPTER 1: THE OP AMP
- **SECTION 1.1**: OP AMP OPERATION
- **SECTION 1.2**: OP AMP SPECIFICATIONS
- **SECTION 1.2**: AC SPECIFICATIONS
- **SECTION 1.3**: HOW TO READ DATA SHEETS
- **SECTION 1.4**: CHOOSING AN OP AMP

CHAPTER 2: OTHER LINEAR CIRCUITS
- **SECTION 2.1**: BUFFER AMPLIFIERS
- **SECTION 2.2**: GAIN BLOCKS
- **SECTION 2.3**: INSTRUMENTATION AMPLIFIERS
- **SECTION 2.4**: DIFFERENTIAL AMPLIFIERS
- **SECTION 2.5**: ISOLATION AMPLIFIERS
- **SECTION 2.6**: DIGITAL ISOLATION TECHNIQUES
- **SECTION 2.7**: ACTIVE FEEDBACK AMPLIFIERS
- **SECTION 2.8**: LOGARITHMIC AMPLIFIERS
- **SECTION 2.9**: HIGH SPEED CLAMPING AMPLIFIERS
- **SECTION 2.10**: COMPARATORS
- **SECTION 2.11**: ANALOG MULTIPLIERS
- **SECTION 2.12**: RMS TO DC CONVERTERS
- **SECTION 2.13**: PROGRAMMABLE GAIN AMPLIFIERS
- **SECTION 2.14**: AUDIO AMPLIFIERS
- **SECTION 2.15**: AUTO-ZERO AMPLIFIERS

CHAPTER 3: SENSORS
- **SECTION 3.1**: POSITIONAL SENSORS
- **SECTION 3.2**: TEMPERATURE SENSORS
- **SECTION 3.3**: CHARGE COUPLED DEVICES (CCDs)
- **SECTION 3.4**: BRIDGE CIRCUITS
- **SECTION 3.5**: STRAIN, FORCE, PRESSURE AND FLOW MEASUREMENT
CHAPTER 4 RF/IF CIRCUITS
 SECTION 4.1: MIXERS
 SECTION 4.2: MODULATORS
 SECTION 4.3: ANALOG MULTIPLIERS
 SECTION 4.4: LOGARITHMIC AMPLIFIERS
 SECTION 4.5: TRU-POWER DETECTORS
 SECTION 4.6: VARIABLE GAIN AMPLIFIER
 SECTION 4.7: DIRECT DIGITAL SYNTHESIS
 SECTION 4.8: PHASE LOCKED LOOPS

CHAPTER 5: FUNDAMENTALS OF SAMPLED DATA SYSTEMS
 SECTION 5.1: CODING AND QUANTIZING
 SECTION 5.2: SAMPLING THEORY

CHAPTER 6: CONVERTERS
 SECTION 6.1: DIGITAL-TO-ANALOG CONVERTER ARCHITECTURES
 SECTION 6.2: ANALOG-TO-DIGITAL CONVERTER ARCHITECTURES
 SECTION 6.3: SIGMA-DELTA (ΣΔ) CONVERTERS
 SECTION 6.4: DEFINING THE SPECIFICATIONS
 SECTION 6.5: DAC AND ADC STATIC TRANSFER FUNCTIONS AND DC ERRORS
 SECTION 6.6: DATA CONVERTER AC ERRORS
 SECTION 6.7: TIMING SPECIFICATIONS
 SECTION 6.8: HOW TO READ A DATA SHEET
 SECTION 6.9: CHOOSING A DATA CONVERTER

CHAPTER 7: DATA CONVERTER SUPPORT CIRCUITS
 SECTION 7.1: VOLTAGE REFERENCES
 SECTION 7.2: ANALOG SWITCHES AND MULTIPLEXERS
 SECTION 7.3: SAMPLE-AND-HOLD CIRCUITS
 SECTION 7.4: CLOCK GENERATION AND DISTRIBUTION
Basic design DGC-G. Advantages of the sealing system - Long strokes with no restrictions - Virtually no leakage. Piston diameter 8-63 mm. Stroke lengths from 1-8500 mm. Guide backlash = 0.2 mm. For small loads. Operating behaviour under torque.

Linear drives DGC. Optionally on 2 sides (on the side or at the front). For DGC-G/DGC-GF/DGC-KF. DL. Compressed air supply port at the left end or at both ends. The linear drive is actuated at the right end or at both ends by default.