Thermophilic Microorganisms

Edited by

Fu-Li Li

Qingdao Institute of Bioenergy and Bioprocess Technology
Chinese Academy of Sciences
Qingdao
China
Contents

Contributors

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
</tr>
</tbody>
</table>

Preface

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
</tr>
</tbody>
</table>

1 Ecology and Genetics of Deep-sea Thermophiles
Xuegong Li, Yu Zhang and Xiang Xiao

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

2 Diversity of Thermophilic Microorganisms and Their Roles in the Carbon Cycle
Shi-Qi Ji, Dong-Dong Meng, Kun-Di Zhang and Fu-Li Li

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
</tr>
</tbody>
</table>

3 Biochemical Properties and Applications of Heat-active Biocatalysts
Christian Schäfers, Skander Elleuche and Garabed Antranikian

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
</tr>
</tbody>
</table>

4 Lignocellulosic Biomass Deconstruction by the Extremely Thermophilic Genus *Caldicellulosiruptor*
Jonathan M. Conway, Jeffrey V. Zurawski, Laura L. Lee, Sara E. Blumer-Schuette and Robert M. Kelly

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
</tr>
</tbody>
</table>

5 Cellulases from Thermophilic Fungi
Duochuan Li

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
</tr>
</tbody>
</table>

6 Alcohol Dehydrogenases and Their Physiological Functions in Hyperthermophiles
Kesen Ma and Ching Tse

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
</tr>
</tbody>
</table>

7 Roles of Polyamines in Thermophiles
Tairo Oshima

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>179</td>
</tr>
</tbody>
</table>

8 DNA Replication in Thermophilic Microorganisms
Sonoko Ishino and Yoshizumi Ishino

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
</tr>
</tbody>
</table>

9 Metabolic Engineering of Thermophiles for Biofuel Production
Ya-Jun Liu and Qiu Cui

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>217</td>
</tr>
</tbody>
</table>

10 Thermophilic Viruses and Their Association with Thermophiles
Wakao Fukuda and Tadayuki Imanaka

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>237</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
</tr>
</tbody>
</table>
Thermophiles thrive in various environments in both marine and terrestrial habitats. The ability of microorganisms to proliferate under extreme conditions is of widespread importance in microbial physiology, biological evolution, the ecological cycle and industry biotechnology. The discovery of thermophilic microorganisms and their enzyme systems has created new opportunities for various industrial applications over the past decades. Temperature is one of the most important factors controlling the adaptation and evolution of organisms, and high-temperature environments are of special interest for scientists, as they reveal the extremes to which evolution has been pushed.

In this book, leading scientists in this field highlight the current achievements of the most updated topic areas. The diversity and ecological roles of thermophiles, biochemical properties of thermostable biocatalysts and their application, the role of polyamines and viruses in thermophiles, DNA replication and metabolic engineering of thermophiles are all covered. Extensive focus is given to industrial applications of thermostable catalysts including alcohol dehydrogenase, glycoside hydrolase, protease and lipases. In addition, authors discussed technical challenges and future development trends.

International experts in this field from Canada, China, Germany, Japan and the USA collaborated on this book. Thank you for all your valuable contribution. In addition, I give my thanks to Caister Academic Press. I hope and I do believe that the book will be useful to students, scientists and engineers who are interested in extreme microbial research.

Dr Fu-Li Li
Index

Note: Where terms appear in tables, page references are in **bold**; where terms appear in figures, page references are in *italic*.

A

Acetone–butanol–ethanol (ABE) 143
Aeropyrum pernix 142, 151–152, 155
Aigarchaeota 201
Alcohol dehydrogenases (ADHs) 141–144
 type I Zn-containing ADHs 147
 type II ADHs 147
 type III Fe-containing ADHs 150
Alicyclobacillus acidocaldarius 50
Alkaline Lost City Hydrothermal Field (LCHF) 6
Alkaline serine proteases 71
α-Glucosidases 54
Aminopeptidase 70
Amylases 49
 anti-staling agents 57
API 70
Aqualysin I 67
Aquifex aeolicus 192
Aquificae 15, 17
Archaea 2, 4–6, 184, 190–192, 195
Archaeal viruses 239
Aspartic proteases 68–69
ATP 204–205
Auxotrophic selectable marker 8

B

Bacillaceae 60
Bacillus stearothermophilus 157
Bacillus thermoproteolyticus 69
Bacterial immunoglobulin-like (Blg) 98
Bacteriophage 246
β-Elimination 97
β-Glucosidase 130
Bicaudaviridae 241
Biocontrol 72, 75
Biofuels 93, 161, 217–218, 225
Biofungicides 72
Butanol 228

C

Caldicellulosiruptor 26, 27, 29, 91, 101–112
 Caldicellulosiruptor saccharolyticus 225
 Caldicellulosiruptor sp. F32 27, 31, 32
Calditerricola satsumensis 181
Carbohydrate active enzymes (CAZymes) 91, 94, 102–105, 110, 112
Carbohydrate-binding modules (CBMs) 27, 30, 33, 34, 35, 38, 94, 96
 type A surface binding 96
 type B glycan chain binding 96
 type C soluble sugar binding 96
Carbohydrate esterase (CE) 97–98
Carbon catabolite repression (CCR) 28, 32
Carbon cycling 13, 14
Carboxydotermus hydrogenoformans 158
Catalytic residues 130
Caudovirales 242
CeA 103–106
Cellobiohydrolase 126, 128
Cellulase-binding domains (CBDs) 126–128, 134
Cellulosolytic community 24, 25
Cellulosolytic microorganisms 25, 26, 94, 99
Cellulose 91, 121
Cellulosomes 33, 34, 34, 100–101, 224
Chromatography 144–145, 181
Chymotrypsin 70
Clavaviridae 241
Clostridia 33, 226–228
Clostridium 162
 Clostridium acetobutylicum 162
 Clostridium cellulosi 35
 Clostridium clariflavum 37
\textbf{Clostridium papyrosolvens} 35
\textbf{Clostridium thermocellum} 33, 100, 109–111, 220–221, 223–224, 226–227
\textbf{ClosTron} 221, 230
Clustered, regularly interspaced short palindromic repeats (CRISPRs) 243–244
\textbf{Coenzyme} 150
\textbf{Consolidated bioprocessing (CBP)} 93, 109, 113, 218, 228
\textbf{Crenarchaeota} 239
\textbf{Cyclodextrin glycosyltransferases (CGTases)} 56
\textbf{Cyclodextrins} 55–57
\textbf{Cysteine proteases} 68
\textbf{Pyrrolidone carboxyl peptidases (Pcp)} 68
\textbf{Decarboxylation} 182
\textbf{Deconstruction of lignocellulose} 29
\textbf{Defence mechanism} 243
\textbf{Deferribacteres} 18, 19, 20, 21
\textbf{Degumming} 76
\textbf{Desulfotomaculum} 20, 22
\textbf{Detergent} 65, 71
\textbf{Detoxification of aldehyde} 160
\textbf{Diastase} 57
\textbf{DNA depurination} 186
\textbf{DNA replication} 189
\textbf{DNA transformation} 218
\textbf{Dormant spores} 19
\textbf{E}
\textbf{East Pacific Rise (EPR)} 6
\textbf{Ecological global patterns} 7
\textbf{Electroporation} 219
\textbf{Endochitinase} 75
\textbf{Epsilonproteobacteria} 5, 6, 15, 17, 18
\textbf{Escherichia coli} 161, 226
\textbf{Esterases} 61–63
\textbf{Esterification} 97
\textbf{Ethanol production} 162, 226
\textbf{Euryarchaeota} 239
\textbf{Expansins} 99
\textbf{Extrachromosomal elements (ECEs)} 238
\textbf{F}
\textbf{FEN1} 207
\textbf{Feruloyl esterases} 64
\textbf{Fibronectin type III (FN3)} 98, 107–110
\textbf{Firmicutes} 18, 19, 20, 21, 22, 23
\textbf{Fungal cellwalls} 122–123, 132
\textbf{Fuselloviridae} 240
\textbf{G}
\textbf{Genetic system} 7, 8, 112–113
\textbf{Genome, secretomes and transcriptome} 32–35
\textbf{Genomes} 102, 240, 241
\textbf{Geobacillus} 162
\textbf{GINS and Cdc6} 194–198
\textbf{Globuloviridae} 241
\textbf{Glucosamylases} 53
\textbf{Glucose repression} 125
\textbf{Glycoside hydrolases (GHs)} 27, 29, 30, 50, 94–96
\textbf{Free-acting GHs} 35
\textbf{Multidomain GHs} 30, 30, 75, 101
\textbf{Glycosylation} 106, 126
\textbf{Green fluorescent proteins (GFP)} 219–220
\textbf{Guaymas Basin} 5
\textbf{Guttaviridae} 241
\textbf{H}
\textbf{Hemicellulose} 14, 29–30, 93
\textbf{Homologous recombination} 221
\textbf{Homology modelling} 130
\textbf{Horizontal gene transfer (HGT)} 244
\textbf{HPLC} 181–182
\textbf{Hydrogen} 225
\textbf{Hydrogen-oxidizing} 15, 23
\textbf{Hydrothermal vent} 1–4, 15, 16, 19, 21
\textbf{see also Shallow hydrothermal vents}
\textbf{Hydrothermal vent community} 4–7
\textbf{Hyperthermophiles} 7, 13, 26, 47
\textbf{I}
\textbf{Immunoglobulin-like (Ig-like) proteins} 98
\textbf{Industrial application} 57, 63, 71, 76, 143
\textbf{Infection} 242
\textbf{In vitro} 186
\textbf{K}
\textbf{Klebsiella oxytoca} 162
\textbf{Korarchaeota} 201
\textbf{L}
\textbf{Lig I protein} 205
\textbf{Lignocellulosic biomass} 14, 25, 91–93, 217, 225
\textbf{Pretreatment of lignocellulose} 30
\textbf{Lignocellulosic biomass deconstruction} 91, 99
\textbf{Linker regions} 106
\textbf{Lipases} 59–60
\textbf{Lipolytic enzymes} 58–64
\textbf{Lipothrixviridae} 240
\textbf{Low-temperature habitats} 19
\textbf{M}
\textbf{Macroalgae} 14
\textbf{Marine environments} 72
\textbf{see also Marine sediments}
\textbf{Marine Group I (MGI)} 6
\textbf{Marine microorganisms} 14
\textbf{Marine sediments} 20, 22, 23
\textbf{see also Marine environments}
\textbf{Maritimacin} 70
\textbf{Markerless disruption system} 9
\textbf{MCM (minichromosome maintenance)} 190, 194–197
\textbf{Meat tenderization} 72
\textbf{Metabolic engineering} 218
\textbf{Metabolic pathways} 182
\textbf{Metagenomics} 112
\textbf{Metal binding motifs} 150
\textbf{Metalloproteases} 69–70
\textbf{Microbial fuel cells (MFC)} 20, 21
Index

N
N-Acetyl-d-glycosaminidases 72
NAD(P)H 150
NAD(P)+ 159, 204
Nascent strand synthesis 200

O
Okazaki fragment 204
Omics technology 224
Open reading frames (ORFs) 32, 35, 36, 123, 241
Optimal pH 151
oriC (origin of chromosome) 191–194, 196
Oxidation of alcohols 159
Oxidative enzymes 134
Oxygen 18

P
PCNA (proliferating cell nuclear antigen) 190, 202–206
Pectinases 75–77
Phylogenetic analysis 131
Phytases 77–78
PolD 201
Polyamines 179–181
Polygalacturonases 75
Polysaccharide lyase (PL) 97
Polysaccharides 15, 24
Pre-replication complex (pre-RC) 194
Primer synthesis 199
Processive DNA synthesis 202
Proteolytic enzymes 64–71
Provirus regions 244–245
Pullulanases 54, 55
Putrescine 182
Pyrobculum aerophilum 157
Pyrococcus 26, 163, 191, 193
Pyrococcus furiosus 146–149, 153, 156, 195, 225
Pyrolysin 67

R
Racemates 63
see also Chiral chemicals
(R)-Benzoin 164
Replication origin 190
Replicative helicase complex 194
Resistance selectable marker 7
Reverse genetics 185
RFC (replication factor C) 190, 202–204
Rudiviridae 240

S
Saccharomyces cerevisiae 159, 161, 194
S-Adenosylmethionine (SAM) 182
Salterprovirus 242
Separate enzymatic hydrolysis and fermentation (SHF) 218
Serine proteases 65–67
Shallow hydrothermal vents 18
see also Hydrothermal vent
Short-chain ADH 141, 155, 160, 163
Simultaneous saccharification and fermentation (SSF) 93, 218, 226
Single-stranded DNA (ssDNA) 194
Site-directed mutagenesis 133–134
S-layer homology (SLH) 107, 108–110
S-layer protein (SLP) 99
Spermine 179
Sphaerolipoviridae 246
Spiriviridae 241
Spore-forming 18, 20, 22, 24
Starch-degrading enzymes 49, 51–52
Substrate-binding residues 130
Substrate specificity 158
Sulfate reduction rates (SRRs) 22
 Sulfolobus 155
sulfur-oxidizing 18
sulfur-reducing 5, 15, 18, 23
Surface layer homology (SLH) 99

T
Taxonomy of viruses (ICTV) 239
Textile processing 76
Thaumarchaeota 201
Thermacae 15, 17
Thermoanaerobacter 162, 220, 227
Thermoanaerobacter brockii 163
Thermoanaerobacter ethanolicus 147, 153, 158
Thermoanaerobacter tengcongensis 53
Thermoanaerobacterium 220, 227
Thermococcales 9–10, 242
Thermococcus 156, 163
Thermococcus kodakaren sis 7–10, 150, 244–245
Thermodesulfbacteria 15, 17
Thermostysin-like peptidases (TLP) 69
Thermomicrobium roseum 158
Thermophiles 23, 143–144, 180–181, 189
see also Thermophilic microorganisms
Thermophilic fungi 121–125
Thermophilic microorganisms 13, 15, 17, 60, 62, 218, 245–246
see also Thermophiles
Thermotargetron 222
Thermotoga 26, 157, 191
Thermotoga maritima 164, 193
Thermotogae 15, 17
Thermozymes 48–49
Thermus 157, 163, 191
Thermus thermophilus 179–180, 182–184, 240
Three-dimensional structures 128, 146–147
Tm (thermal denaturation temperature) 186
Transcription factors 125
Transformation 7
Turriviridae 242

V
Viruses 237
see also Archaeal viruses
Volatile fatty acids (VFA) 22

Z
Zymomonas mobilis 143, 161
Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Voronina, N.G., Voronkina, I.M., Tsapina, I.A., Yakov-leva, M.B., and Rudenskaya, G.N., Prospects of the Application of Enzyme Preparations from Thermoactinomycetes vulgaris for the Hydrolysis of Casein during Manufacturing Nutrient Media for Microorganisms, Biologiya termofil'nykh mikroorganizmov (Biology of Thermophilic Microorganisms), Imshenetskii, A.A., Ed., Moscow: Nauka, 1986, pp. 251-252. Thermophilic and thermostable microorganisms are of important economic value due to their ability to produce thermostable extracellular enzymes which have important biotechnological applications. It is known that thermophilic activities are generally associated with protein thermostability. Thus, proteins produced by thermophiles tend to be more thermostable than their mesophilic counterparts.