Contents

Preface ix
Acknowledgements xi
Notations xvi

1 Overview 1
KOHKITAKATOH

1.1 Development of the LCD Market 1
1.2 Improvement of Viewing Angle Dependence of the Contrast Ratio 2
1.3 Ferroelectric and Antiferroelectric Liquid Crystals 2
1.4 Development of Novel Alignment Method 3
1.5 The Characteristics of this Book 4

2 Rubbing Technologies: Mechanisms and Applications 7
MASAKIHASEGAWA

2.1 Introduction 7
2.2 Rubbing Mechanisms 8
 2.2.1 Observations of rubbed surfaces 8
 2.2.2 Definition of rubbing strength 23
 2.2.3 Alignment mechanisms 30
 2.2.4 Pretilt mechanisms 32
2.3 Applications 36
 2.3.1 Alignment defects of actual devices 36
 2.3.2 Characteristics of the rubbing process 43
 2.3.3 Alignment material 47

3 Non-rubbing Methods 55
MASAKIHASEGAWA

3.1 Introduction 55
3.2 Photoalignment 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Introduction</td>
<td>57</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Overview</td>
<td>59</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Photoalignment using polyimide</td>
<td>65</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Influence of UV light on display device characteristics</td>
<td>70</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Light source</td>
<td>72</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Comparison of photoalignment and rubbing</td>
<td>73</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Current status of photoalignment</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Oblique Evaporation Method</td>
<td>76</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Alignment mechanism</td>
<td>76</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Evaporation apparatus</td>
<td>78</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Material scientific view point</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>Liquid Crystal Alignment on Microgroove Surfaces</td>
<td>79</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Liquid crystal alignment on microgroove surfaces</td>
<td>79</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Control of the pretilt direction by a "hybrid cell"</td>
<td>79</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Microgroove surface control of pretilt angle direction</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>LR Membranes for the Alignment Layer</td>
<td>84</td>
</tr>
<tr>
<td>3.5.1</td>
<td>LB membranes for the alignment layer</td>
<td>84</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Polyimide LB alignment film</td>
<td>85</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Structure of polyimide LB films and liquid crystalline alignment on the film</td>
<td>85</td>
</tr>
<tr>
<td>3.6</td>
<td>PTFE Drawn Films for Alignment Layers</td>
<td>87</td>
</tr>
<tr>
<td>3.7</td>
<td>Liquid Crystalline Alignment on Chemically Treated Surfaces</td>
<td>89</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Addition of surface active agents into liquid crystalline materials</td>
<td>90</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Treatment of the substrate surface by active surface agents</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>Applications of Nematic Liquid Crystals</td>
<td>99</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of Molecular Alignment and Device Applications</td>
<td>99</td>
</tr>
<tr>
<td>4.2</td>
<td>Twisted Nematic (TN)</td>
<td>102</td>
</tr>
<tr>
<td>5</td>
<td>Alignment Phenomena of SLCs</td>
<td>109</td>
</tr>
<tr>
<td>5.1</td>
<td>Layer Structure and Molecular Alignment of Liquid Crystals</td>
<td>109</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Introduction</td>
<td>109</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Ferroelectric SmC'</td>
<td>109</td>
</tr>
</tbody>
</table>
Contents

Device characteristics 65
Preparation of rubbed surfaces 70
Active alignment 72
Device Applications 75
Device Characteristics 76
microgroove surfaces 79
by a "hybrid cell" pretilt angle direction layer 83
 alignment layer 84
and liquid crystalline layers 87
pretreated liquid crystalline layer 89
by active surface agents 90
Device Applications 99
phases 99

4.2.1 Basic operation 103
4.2.2 OFF state 104
4.2.3 ON state 105
4.2.4 Dynamic response 105
4.2.5 Reverse domains 106
4.3 Super Twisted Nematic (STN) 106
NOBUYUKI ITOH
4.4 The IPS (In-Plane Switching) Mode 110
MITSUHIRO KODEN
4.5 Vertical Alignment (VA) Mode and Multi-domain vertical Alignment (MVA) Mode 111
KOHKI TAKATOH
4.5.1 Vertical alignment (VA) mode 111
4.5.2 MVA method (Multi-domain vertical alignment method) 112
4.6 Pi Cell 117
MASAKI HASEGAWA
4.6.1 LC configuration 118
4.6.2 Dynamics 120
4.7 Multi-domain Mode 121
KOHKI TAKATOH
4.7.1 Improvement of the viewing angle dependence of TN-LCDs 121
4.7.2 Mechanism of viewing angle dependence of TN-LCDs 122
4.7.3 Reduction of the viewing angle dependence by the multi-domain mode 123
4.7.4 Formation of two kinds of regions possessing different alignment directions in one pixel 125
4.7.5 Formation of two kinds of region with different pretilt angles in one pixel 127
4.8 Polymer Dispersed Liquid Crystals (PDLC) 132
RAY HASEGAWA

5 Alignment Phenomena of Smectic Liquid Crystals 139
5.1 Layer Structure and Molecular Orientation of Ferroelectric Liquid Crystals 139
NOBUYUKI ITOH
5.1.1 Introduction 139
5.1.2 Ferroelectric SmC* liquid crystals 139
Contents

5.1.3 Surface-Stabilized Ferroelectric Liquid Crystals (SSFLCs) 141
5.1.4 Smectic layer structure study 142
5.1.5 Molecular orientational states and optical properties 149
5.1.6 Summary 162

5.2 Alignment and Bistability of Ferroelectric Liquid Crystals 163

Preface

The aim of this book is to present the technologies of liquid crystalline materials. These technologies determine the material phases on surfaces, and by understanding the properties of the LCDs, essential knowledge of LCDs is also given in the text, which is as far as possible.

Originally, the book was planned to be a complete introduction. However, as writing progressed, it became apparent that it was necessary to focus on specific areas, especially based upon discussions and the reader's feedback. Although discussions were little limited, each chapter was supplemented and supported by relevant references.

The first half of the book deals with smectic liquid crystals, and in the second half, almost all commercially available materials are discussed. The first chapters provide information on the fundamentals of smectic liquid crystals with all the essential knowledge of LCDs. In the first half, almost all commercially available materials are discussed, while the second half focuses on the properties of the crystals that are essential for LCDs.

The book provides useful information for researchers working on development of novel surfaces, and for those beginning to work in the LCD field, with references and bibliographical fields.

The authors have all worked in the field of liquid crystals during these years and were able to provide a comprehensive overview of the current state of the art.