Nanocomposite Science and Technology
Contents

1 Bulk Metal and Ceramics Nanocomposites 1
 Pulickel M. Ajayan
 1.1 Introduction 1
 1.2 Ceramic/Metal Nanocomposites 3
 1.2.1 Nanocomposites by Mechanical Alloying 6
 1.2.2 Nanocomposites from SolGel Synthesis 8
 1.2.3 Nanocomposites by Thermal Spray Synthesis 11
 1.3 Metal Matrix Nanocomposites 14
 1.4 Bulk Ceramic Nanocomposites for Desired Mechanical Properties 18
 1.5 Thin-Film Nanocomposites: Multilayer and Granular Films 23
 1.6 Nanocomposites for Hard Coatings 24
 1.7 Carbon Nanotube-Based Nanocomposites 31
 1.8 Functional Low-Dimensional Nanocomposites 35
 1.8.1 Encapsulated Composite Nanosystems 36
 1.8.2 Applications of Nanocomposite Wires 44
 1.8.3 Applications of Nanocomposite Particles 45
 1.9 Inorganic Nanocomposites for Optical Applications 46
 1.10 Inorganic Nanocomposites for Electrical Applications 49
 1.11 Nanoporous Structures and Membranes: Other Nanocomposites 53
 1.12 Nanocomposites for Magnetic Applications 57
 1.12.1 Particle-Dispersed Magnetic Nanocomposites 57
 1.12.2 Magnetic Multilayer Nanocomposites 59
 1.12.2.1 Microstructure and Thermal Stability of Layered Magnetic
 Nanocomposites 59
 1.12.2.2 Media Materials 61
 1.13 Nanocomposite Structures having Miscellaneous Properties 64
 1.14 Concluding Remarks on Metal/Ceramic Nanocomposites 69
2.1 Introduction 77
2.2 Nanoscale Fillers 80
2.2.1 Nanofiber or Nanotube Fillers 80
2.2.1.1 Carbon Nanotubes 80
2.2.1.2 Nanotube Processing 85
2.2.1.3 Purity 88
2.2.1.4 Other Nanotubes 89
2.2.2 Plate-like Nanofillers 90
2.2.3 Equi-axed Nanoparticle Fillers 93
2.3 Inorganic FillerPolymer Interfaces 96
2.4 Processing of Polymer Nanocomposites 100
2.4.1 Nanotube/Polymer Composites 100
2.4.2 Layered FillerPolymer Composite Processing 103
2.4.2.1 Polyamide Matrices 107
2.4.2.2 Polymide Matrices 107
2.4.2.3 Polypropylene and Polyethylene Matrices 108
2.4.2.4 Liquid-Crystal Matrices 108
2.4.2.5 Polymethylmethacrylate/Poly styrene Matrices 108
2.4.2.6 Epoxy and Polyurethane Matrices 109
2.4.2.7 Polyelectrolyte Matrices 110
2.4.2.8 Rubber Matrices 110
2.4.2.9 Others 111
2.4.3 Nanoparticle/Polymer Composite Processing 111
2.4.3.1 Direct Mixing 111
2.4.3.2 Solution Mixing 112
2.4.3.3 In-Situ Polymerization 112
2.4.3.4 In-Situ Particle Processing Ceramic/Polymer Composites 112
2.4.3.5 In-Situ Particle Processing Metal/Polymer Nanocomposites 114
2.4.4 Modification of Interfaces 117
2.4.4.1 Modification of Nanotubes 117
2.4.4.2 Modification of Equi-axed Nanoparticles 118
2.4.4.3 Small-Molecule Attachment 118
2.4.4.4 Polymer Coatings 119
2.4.4.5 Inorganic Coatings 121
2.5 Properties of Composites 122
2.5.1 Mechanical Properties 122
2.5.1.1 Modulus and the Load-Carrying Capability of Nanofillers 122
2.5.1.2 Failure Stress and Strain Toughness 127
2.5.1.3 Glass Transition and Relaxation Behavior 131
2.5.1.4 Abrasion and Wear Resistance 132
2.5.2 Permeability 133
2.5.3 Dimensional Stability 135
3 Natural Nanobiocomposites, Biomimetic Nanocomposites, and Biologically Inspired Nanocomposites 155
Paul V. Braun

3.1 Introduction 155

3.2 Natural Nanocomposite Materials 157
3.2.1 Biologically Synthesized Nanoparticles 159
3.2.2 Biologically Synthesized Nanostructures 160

3.3 Biologically Derived Synthetic Nanocomposites 165
3.3.1 Protein-Based Nanostructure Formation 165
3.3.2 DNA-Templated Nanostructure Formation 167
3.3.3 Protein Assembly 169
3.4 Biologically Inspired Nanocomposites 171
3.4.1 Lyotropic Liquid-Crystal Templating 178
3.4.2 Liquid-Crystal Templating of Thin Films 194
3.4.3 Block-Copolymer Templating 195
3.4.4 Colloidal Templating 197

3.5 Summary 207

4 Modeling of Nanocomposites 215
Catalin Picu and Pawel Keblinski

4.1 Introduction The Need For Modeling 215
4.2 Current Conceptual Frameworks 216
4.3 Multiscale Modeling 217
4.4 Multiphysics Aspects 220
4.5 Validation 221

Index 223
Nanocomposite. Nanocomposites can be defined as multicomponent materials comprising multiple different (nongaseous) phase domains in which at least one type of phase domain is a continuous phase and in which at least one of the phases has at least one dimension of the order of nanometers (Chen et al., 2007). From: Wound Healing Biomaterials, 2016. Nanocomposites are heterogeneous materials—thus their properties are determined by the same factors as in traditional composites, i.e., component properties, composition, structure, and interfacial interactions. On the other hand, their structure is usually more complicated than that of microcomposites, and that is especially valid for polymer/layered silicate nanocomposites. Nanocomposite; Science and Technology. Book Â· May 2012 with 232 Reads. How we measure 'reads'. Nanocomposites are produced by the addition of fillers (and other reactants) into polymer melts under mechanical action and high temperature (above the glass transition temperature of the polymer). The viscosity of the polymer-nanoparticles melts can impact this processing method: the addition of nanoparticles can rapidly and strongly increases the viscosity of the melt making the process not possible anymore (Schadler 2004). Moreover due to the tendency of nanoparticles to agglomerate this method leads to random particle dispersion in the polymer matrix (Caseri 2007).